3-Substituted Imidazo[1,5-a]pyridines

W. L. Albrecht, J. A. Corona and M. L. Edwards*

Merrell Research Center, Merrell-National Laboratories, Division of Richardson-Merrell Inc., 2110 East Galbraith Road, Cincinnati, Ohio 45215 Received May 2, 1979

Cyclization of amides of 2-aminomethylpyridine gave imidazo[1,5-a]pyridines. In several examples the literature preparation (phosphorus oxychloride) gave extensive tar formation. The use of phosphorus trichloride-triethylamine (-20°) gave the desired imidazo[1,5-a]pyridines.

J. Heterocyclic Chem., 16, 1349 (1979).

We recently had occasion to prepare some 3-substituted imidazo[1,5-a]pyridines (Table II). Two general procedures have been reported for the synthesis of imidazo-[1,5-a]pyridines. Bower and Ramage (1) utilized phosphorus oxychloride for the ring closure of the amides

(2) derived from 2-aminomethylpyridine. Winterfeld and Franzke (2) utilized a one-step procedure in polyphosphoric acid.

This paper reports our use of phosphorus trichloride at low (-20°) temperatures in tetrahydrofuran/triethylamine to effect this ring closure. It was found that for several compounds (15,18,20; Table II) the use of phosphorus oxychloride gave extensive tar formation which was avoided by the use of phosphorus trichloride at low temperature $(-15 \text{ to } -20^{\circ})$. We feel this method is a useful alternative to the published procedures.

EXPERIMENTAL

Melting points were determined with a Thomas-Hoover apparatus and are uncorrected. Ir spectra were determined in pressed potassium bromide disks. Nmr spectra were determined on a Varian spectrometer and shifts are reported in parts per million (8) with TMS as an internal standard.

Amide Intermediate Preparation.

4-Chloro-N-(2-pyridinylmethyl)benzenepropanamide (4) (Method A).

A mixture of 2-aminomethylpyridine (10.8 g., 0.1 mole), p-chlorophenylpropionic acid (18.5 g., 0.1 mole) and toluene (1.2 l.) was heated at reflux temperature for 18 hours. The water evolved was collected by use of a Dean-Stark trap. The reaction mixture was washed with aqueous sodium bicarbonate and the organic layer was evaporated to dryness. The residue was recrystallized from cyclohexane/benzene to give 19 g. of white needles, m.p. 82-84°; ir (potassium bromide): 3325, 1640, 1600, 1580, 1540, 1500, 1440, 1100, 1020 and 775 cm⁻¹; nmr (DMSO-d₆): δ 2.4-3.0 (m, 5H), 4.35 (d, J=6, 2H), 7.0-7.9 (m, 7H), 8.46 (m, 1H). 2,4-Dichloro-N-(2-pyridinylmethyl)benzeneacetamide (5) (Method B).

To a solution of 2-aminomethylpyridine (10.8 g., 0.1 mole) and triethylamine (10 g., 0.1 mole) in chloroform (300 ml.) was added dropwise a solution of 2,4-dichlorobenzoylchloride (20.9 g., 0.1 mole) in chloroform (50 ml.). The mixture was heated at reflux temperature for 3 hours cooled and washed with aqueous sodium bicarbonate. The organic layer was dried (sodium sulfate) and evaporated. The residue was recrystallized from benzene/cyclohexane to give 20 g. of white solid, m.p. 113-114°; ir (potassium bromide): 3325, 1650, 1590, 1540, 1315, 1105, 840 and 750 cm⁻¹; nmr (DMSO- d_6): δ 3.33 (s, 1H), 4.62 (d, J = 6, 2H), 7.1-8.0 (m, 5H), 8.46-8.66 (m, 1H), 8.9-9.3 (m, 1H).

Ring Closure.

3-[3-(Trifluoromethyl)phenyl]imidazo[1,5-a]pyridine (15) (Method B).

Compound 7 (7.2 g., 0.02 mole) was dissolved in a mixture of THF (250 ml.) and triethylamine (15 ml.) and the solution was chilled to -20°. A solution of phosphorus trichloride (3.06 g., 0.022 mole) in THF (40 ml.) was added (nitrogen/atmosphere) at a rate which maintained a reaction temperature of -20 to -15°. After 20 minutes at -15 to -20°, tlc (silica gel) toluene/ethyl acetate 1/1 v/v) indicated a complete reaction. The reaction mixture was poured into water (500 ml.) and the aqueous mixture was extracted with ethyl acetate (2 × 400 ml.). The combined extracts were dried and evaporated to give 4.3 g. of residue which was purified on a silica gel column (toluene/ethylacetate 1/1 v/v). Recrystallization (hexane) of the product isolated from the column gave 3 g. of solid, m.p. $58\text{-}60^{\circ}$; ir (potassium bromide): 1600, 1350, 1320, 1300, 1245, 1160, 1115, 1065, 795, 745, 700 and 680 cm⁻¹; nmr (deuteriochloroform): δ 6.4-6.9 (m, 2H), 7.3-7.75 (m, 4H) and 7.9-8.3 (m, 3H).

REFERENCES AND NOTES

- (1) J. D. Bower and G. R. Ramage, J. Chem. Soc., 2834 (1955). (2) K. Winterfeld and H. Franzke, Angew. Chem., 75, 1101 (1963).

Table I Amide Intermediates

									Analyses	ş	1		
Compound No.	æ	R,	Yield %	Method (a)	M.p., °C	ပ	Calcd. H	cq. N	IJ	ပ	Found H	N N	Ö
4	ж	CH2CH2	92	∢	82-84	65.57	5.50	10.20	12.90	65.12	5.45	10.28	12.84
w	Ħ	5	11	В	113-114	55.53	3.58	26.6	25.22	55.33	3.58	10.10	25.25
ø	Ħ	- CH	09	¥	108-109	79.44	9.90	9.26	I	79.50	5.90	9.24	1
7	н	OF 3	30	∀	174-175	46.55	3.35	7.76	I	46.44	3.41	8.00	I
∞	н	- CH = CH	30	¥	168-169	58.65	3.94	9.12	23.08	59.07	3.95	9.26	23.40
6	н	OH20 CH	99	¥	104-105	54.03	3.89	9.00	22.79	54.22	3.90	9.13	22.58
10	н	CH ₂	69	⋖	134.5-135.5	56.97	4.10	I	24.02	56.96	4.19	I	24.35
11	C,H,	5	20	æ	110-112	63.88	3.95	7.84	19.85	63.55	3.99	7.65	19.83

(a) Method A: A toluene mixture of 2-aminomethylpyridine and the acid was heated at reflux under a Dean Stark trap until water evolution ceased. Method B: Reaction of 2-aminomethylpyridine with an acid chloride.

Table II Imidazo[1,5-a]pyridines

			:	-			7	7	Analyses	s:	Found	7	
Compound No.	æ	æ,	Yield %	Method (a)	M.p., °C	၁	H Carco.	, N	ij	ပ	H	Z	IJ
12	æ	CH ₂ CH ₂	99	A	92.93	70.17	5.10	10.91	13.81	70.03	5.23	10.89	13.86
13	Ħ	5	30	¥	92.93	59.34	3.06	10.65	26.95	59.14	3.18	10.56	26.83
14	н	TO TO	30	¥	138-140	84.47	2.67	9.85	I	84.63	6.02	10.12	1
15	н	d'e	28	В	58-60	64.12	3.46	10.68	I	64.35	3.58	10.75	1
16	н	- CH = CH - CI	30	¥	185-186	62.30	3.49	69.6	24.52	62.02	3.60	9.45	24.43
17	н	-CH ₂	73	¥	120.5-121.5	29.09	3.64	10.01	ı	60.49	3.73	10.13	I
18	C,H,	ō	20	æ	215-217 (b)	54.31	3.12	29.9	l	54.07	3.23	6.85	I
19	Ħ	5 5	40	¥	145-146	59.34	3.06	10.65	26.95	59.39	2.92	11.04	26.73
20	н	CH ₂ O CI	20	æ	150-151	57.36	3.44	9.56	24.19	56.98	3.37	9.71	23.51

(a) Method A: Phosphorus oxychloride in benzene according to the procedure of Bower and Ramage (1). Method B: Phosphorus trichloride (b) Hydrobromide salt.